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Abstract

Transferring learnt options in hierarchical RL can yield poor performance when
they are even slightly misaligned to the new task. This paper introduces soft
option transfer: the given options are treated as a prior to learn task-specific option
posteriors. This combines the fast exploration of transferred options with the
flexibility to adjust them if need be. We investigate our approach in the taxi domain
with varying option applicability and exploration complexity. The experiments
demonstrate a clear advantage over flat policies and ‘hard’ options augmented with
primitive actions.

1 Introduction

Most RL methods train an agent from scratch, even when experiences from similar tasks are readily
available. This is in stark contrast to humans, who easily transfer skills across tasks, domains, and
contexts.

One popular approach to transfer knowledge in RL (see e.g. Dietterich, [2000; Barreto et al., 2017,
for others), is the options framework (Sutton et al.,|1999). Options are temporally extended actions
that can be learnt and transferred to new tasks. While learning a set of options can greatly improve
exploration for new tasks, and thereby speed up learning (Sutton et al., [1999), there are currently
no flexible methods for reusing learnt options. In most existing work, the learnt options are fixed
and only a new master policy over options is learnt for the new task. This is severely restrictive:
if the options are even slightly misaligned, it may not be possible to represent a high performing
policy. Furthermore, previous work (Jong et al.,2008)) has shown, and we confirm their results, that
augmenting options with atomic actions to overcome this restrictiveness can hurt exploration. Using
a set of fixed options can therefore accelerate learning, but also limit the range of tasks where optimal
performance can be achieved.

Recently, Igl et al.| (2019) formulated options using the RL as Inference framework (Levine, [2018)
in multi-task settings. This allows learning of “soft options™ for each task, which are regularized
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against a shared option prior. This method learns options that are a useful prior for a range of tasks,
but each task can adjust them freely if need be. Based on this idea, this paper investigates soft option
transfer, a new method to solve RL tasks with given options, even if these options cannot initially
represent a high performing policy. We treat the given options as a fixed prior and learn another
set of posterior options that may deviate from them, if it results in higher expected return for the
new task. We demonstrate that this method allows a more flexible reuse of options to speed up
learning. Furthermore, we provide additional insights into the more fundamental question of when
knowledge transfer can be expected to be advantageous. In particular, we investigate the impact of
task-difference (i.e., misspecification of options) and exploration complexity.

2 Related Work

A variety of approaches have been proposed that use a hierarchical composition of skills (Sutton et al.|
1999; McGovern and Barto), 2001} |Gregor et al., |2016; Eysenbach et al., 2019; Vezhnevets et al.}
2017} Nachum et al., 2018} |Dayan and Hintonl 1993} Bacon et al., 2017} Thrun and Schwartz, |1995)).
However, using skills in a transfer setting has been investigated significantly less often, especially
in settings where environmental changes lead to a misspecification of the previously obtained skills.
We argue that this is the more relevant scenario as behaviors rarely translate exactly from one task
to another. One approach to adapt to changing requirements is to allow the skills to be modified
by a higher-level controller (Schaul et al., 2015} Heess et al., [2016; |Haarnoja et al., 2018)). This
restores the required flexibility of skills but might not guide exploration sufficiently to overcome
hard exploration tasks. Lastly, some recent works have explored the RL as Inference framework for
transfer. |Goyal et al.| (2019) uses the regularization cost to identify decision states while [Tirumala
et al.| (2019) also investigates settings in which the task remains the same while the physical body
of the agent changes. Contrary to our work in which we transfer the learnt skills, they transfer the
master policy while re-learning the lower-level skill.

3 Background and Methodology

This paper follows the formalism of |Igl et al.|(2019) to transfer misspecified options. We consider
several tasks ¢ € 7 drawn from a task distribution with £(7), each described as a Markov Decision
Process (MDP) (S;, A;, pi, Py, ;). To simplify transfer, all tasks share a state space S; := S and action
space A; := A, but can have distinct initial state distributions p;, transition dynamics P;(s;1]s¢, at)
and reward functions r;(s¢, a;). The goal is to maximize the expected discounted sum of rewards
J :=Eqr,[> 207 re], optimized w.r.t. the parameters 6 of the agent’s hierarchical policy 7.

In the options framework (Sutton et al.l[1999), an option o consists of an initiation set Z, C S, intra-
option policy p”, and termination policy p’. We assume for simplicity Z, := S, Vo € , and that all
options share parameters by conditioning both policies on the executed option o;. The intra-option
policy p™(ay|s;, 0;) is therefore executed until a terminal state s; with b, = 1,b; ~ p?(bs|ss, 05_1) is
reached. After termination of the previous option, the master policy m£/(o¢|s;) chooses a new option.

MSOL (Igl et al.,[2019) employs the RL as Inference framework (Todorovl, 2008} Toussaint, [2009;
Kappen et al., 2012; |Levinel [2018) to simultaneously solve multiple tasks. Each task optimizes its own
soft options (mg(a|st, 0r), Ty (be|st, 04—1)), which are regularized (with parameter 3) to resemble a
common option prior (p™(ay|s¢, o), pT(bt|s¢, 0¢_1)). The loss for episode {s¢, by, of, ag, 74}y is:

T T H _ L
L g (be|se,00—1) bt 7o (0¢]50)+(1—b1)80s0, 1 wj(as]se,00)
£<9) T 7t§1Eﬂ9[Tt o 61n (p%(bt‘staot—l) bt/‘o|+(1—bt)5otot,l pi(at‘3t70t)):| : (1)
After training both the posterior of each task and the parameterized prior over all tasks, MSOL
transfers the learnt options to new tasks from 7. In the test task, MSOL trains the master policy,
which is initialized randomly, and the posterior, which is initialized with the parameters of the prior,
with the same loss while keeps the prior fixed.

This paper investigates what happens when the test task is not from 7 and the learnt options are ill
equipped to solve it. In principle, any set of options could be used as a prior, including hand-crafted
options and those learnt by other methods like option-critic (Bacon et al., [2017). However, for
the sake of simplicity we train the transferred options with MSOL, and leave a transfer from other
methods for future work. The option priors trained on 7 can be misspecified for a new task ¢ ¢ T
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Figure 1: Taxi environments with different dimensions and potential pickup/dropoff locations.
Options are learnt in the original domain (a+d) and transferred to tasks with modified (b+e) or further-
modified (c+f) pickup/dropoff locations. Larger grid dimensions (d-f) require more exploration.

and we investigate how well the posterior of the learnt soft-options in MSOL can compensate for that
misspecification.

We observe empirically that options learnt end-to-end are often almost deterministic, which results
in poor exploration for even slightly different tasks. To address this, we propose to increase the
stochasticity of the given options, for example, by increasing the softmax temperatures in the given
options’ policies p” and p” over discrete action spaces.

4 Experiments

In the following, we compare soft option transfer against two sets of baselines. First, we have two
‘hard’ option transfer agents that freeze the options before transfer and only learn a new master
policy over them. In one of them, the set of options is augmented by primitive options, i.e., atomic
actions, which in principle allows it to express any policy and therefore removes the limitation
on the representational capacity of the hierarchical policy. However, we show that under option
misspecification, soft options easily outperform both baselines. This confirms previous results
showing that augmenting the action space of an agent with hard options can hurt exploration (Jong
et al., 2008)).

The second set of baselines addresses the more general question: In which settings does option
transfer benefit exploration and learning? To do so, we compare against two flat A2C agents that do
not reuse options, one of which is trained from scratch and another transfers an ‘encoder’: the first 3
layers of an A2C agent solving the tasks in the original environments.

We conduct experiments in the Taxi domain motivated by |Dietterich/ (2000) and gl et al.[(2019). Each
environment is a grid world with obstacles and four potential locations for the pickup and dropoff of
a passenger (see Figure[T). A task in an environment is defined as a combination of distinct pickup
and dropoff locations, which yields 12 tasks in each environment. To gain reward, the agent needs
to first move to the pickup location, execute a special pickup/dropoff action, move to the dropoff
location and execute the same action again, which ends the episode. We use 4 options that are learnt
from the 12 tasks of the 8x8 or 10x10 original environments (Figures[Th and [Td) by MSOL (Igl et al.}
2019). Note that, to ensure generality of options, task-relevant information is withheld from them,
similar to previous work, for example, (Galashov et al., 2018)).

To evaluate the utility of (soft) option transfer in different settings, we vary the environment in two
ways: how misspecified the learnt options are and how difficult the exploration is. To induce mis-
specification, we shift the pickup and dropoff locations by one grid cell, called modified environment
(Figures [Tb and[Tg) or two grid cells, called further modified (Figures [Tk and [If). The difficulty
of exploration is determined by the size of the grid, as larger environments (Figures[I[d to [T}f) are
considerably harder.

Figure |2 plots the average expected return in the 12 tasks of the 8x8 modified environment. The
hard option transfer agent fails because using the given set of options, the agent is never able to finish
a single task. Interestingly, additional access to atomic actions learns much more slowly than the
agent that is trained from scratch. A similar finding is reported by |[Jong et al.|(2008]), who show that
under random exploration, mixing options with atomic actions can hurt performance.
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Figure 2: Performance of soft option transfer and baseline methods in 12 tasks of the modified
environments shown in Figures[Ib and[Tg. Note that soft option transfer outperforms hard option
transfer significantly. Flat policies solve the task in the smaller environment (left) similarly well,
but soft options have a clear advantage in larger environments (right) when even misaligned options
improve exploration significantly.
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Figure 3: Left: Performance of soft option transfer agents trained with various regularization
parameters 3. Right: Performance of soft option transfer agents whose option posteriors are initialized
to the same options but are regularized towards option priors that are softened with different softmax
temperatures. Both of the transfer experiments are conducted in the 8x8 modified environments.

Because exploration in tasks of the 8x8 modified environment is not hard enough, transferring a state
representation given by an encoder slightly outperforms soft options. By contrast, for larger grid
sizes, Figure Zp demonstrates that in these tasks soft option transfer learns much faster and achieves
higher performance than all baselines: because the exploration challenge on those tasks is much
harder, even misspecified options accelerate learning as long as they are flexible, i.e., soft.

We also compare the soft option with flat agents in the 8x8 and 10x10 further-modified environments
(Figures [Tk and [Tff), which are easier to explore, as pickup and dropoff locations are closer to each
other, but the given options are more misspecified (see Figured]in the appendix).

The key feature of soft option transfer that enables faster learning is that it uses option priors to
guide the policy search. However, the advantage of this guidance depends on how much it can help
to overcome hard exploration and how much it distracts the agent from finding the optimal policy.
This trade-off is captured by soft options in the temperature parameter 3. For example, in the further
misspecified environment (Figure [d)), the performance of soft options can be raised by lowering /3
compared to the less misspecified setting. To explore this further, in Figure [3h, we compare soft



option transfer agents trained with different regularization parameters 5. With 5 = 1.0, the agent
refuses to deviate from the option priors because of the strong regularization and does not learn
anything. With = 0.0 and 8 = 0.01, the agents learn much more slowly than the agent with
B = 0.1, due to the lack of guidance to overcome the hard exploration. In all cases, the policies are
initialized to the prior, showing the importance of regularization in addition to initialization.

Lastly, in Figure [3b, we compare soft option transfer agents, where we initialized the posteriors to
the given options softened by the same softmax temperature 3.0, but regularized towards priors with
varying softmax temperatures, which has similar effects to tuning 5. The figure shows that even
with the same initial posterior options and the same temperature parameter 3 = 0.1, the priors have
a large impact. On the one hand, very deterministic option priors, with softmax temperature 1.0,
prevent the agent from exploring sufficiently to find an optimal policy. On the other hand, agents with
large softmax temperatures, like 10.0 and 100.0, learn more slowly because regularizing posterior
options towards prior options that are very stochastic results in the loss of guided exploration. All
other presented results were computed with a softmax temperature of 3.0.



References
Bacon, P.-L., Harb, J., and Precup, D. (2017). The option-critic architecture. In AAAI, pages 1726-1734.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., Van Hasselt, H., and Silver, D. (2017). Successor
features for transfer in reinforcement learning. In Advances in neural information processing systems, pages
4056-4066.

Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in neural information processing
systems, pages 271-278.

Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition.
Journal of Artificial Intelligence Research, 13:227-303.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2019). Diversity is all you need: Learning skills without a
reward function. In International Conference on Learning Representations.

Galashov, A., Jayakumar, S., Hasenclever, L., Tirumala, D., Schwarz, J., Desjardins, G., Czarnecki, W. M., Teh,
Y. W., Pascanu, R., and Heess, N. (2018). Information asymmetry in kl-regularized rl.

Goyal, A., Islam, R., Strouse, D., Ahmed, Z., Botvinick, M., Larochelle, H., Bengio, Y., and Levine, S. (2019).
InfoBot: Transfer and Exploration via the Information Bottleneck. arXiv preprint arXiv:1901.10902.

Gregor, K., Rezende, D. J., and Wierstra, D. (2016). Variational intrinsic control. arXiv preprint
arXiv:1611.07507.

Haarnoja, T., Hartikainen, K., Abbeel, P., and Levine, S. (2018). Latent Space Policies for Hierarchical
Reinforcement Learning. In International Conference on Machine Learning, pages 1846-1855.

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M., and Silver, D. (2016). Learning and transfer of
modulated locomotor controllers. arXiv preprint arXiv:1610.05182.

Igl, M., Gambardella, A., Nardelli, N., Siddharth, N., Bohmer, W., and Whiteson, S. (2019). Multitask Soft
Option Learning. arXiv preprint arXiv:1904.01033.

Jong, N. K., Hester, T., and Stone, P. (2008). The utility of temporal abstraction in reinforcement learning. In
Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS,
volume 1, pages 294-301.

Kappen, H. J., Gémez, V., and Opper, M. (2012). Optimal control as a graphical model inference problem.
Machine learning, 87(2):159-182.

Levine, S. (2018). Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review. arXiv
preprint arXiv:1805.00909.

McGovern, A. and Barto, A. G. (2001). Automatic Discovery of Subgoals in Reinforcement Learning using
Diverse Density. In International Conference on Machine Learning, pages 361-368.

Nachum, O., Gu, S., Lee, H., and Levine, S. (2018). Data-efficient hierarchical reinforcement learning. arXiv
preprint arXiv:1805.08296.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators. In
International Conference on Machine Learning, pages 1312—-1320.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181-211.

Thrun, S. and Schwartz, A. (1995). Finding structure in reinforcement learning. In Advances in neural
information processing systems, pages 385-392.

Tirumala, D., Noh, H., Galashov, A., Hasenclever, L., Ahuja, A., Wayne, G., Pascanu, R., Teh, Y. W., and Heess,
N. (2019). Exploiting hierarchy for learning and transfer in kl-regularized rl. arXiv preprint arXiv:1903.07438.

Todorov, E. (2008). General duality between optimal control and estimation. In Decision and Control, 2008.
CDC 2008. 47th IEEE Conference on, pages 4286—4292. IEEE.

Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In Proceedings of the 26th
annual international conference on machine learning, pages 1049-1056. ACM.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and Kavukcuoglu, K. (2017).
Feudal networks for hierarchical reinforcement learning. In International Conference on Machine Learning,
pages 3540-3549.



Appendix
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Figure 4: Performance of soft option transfer and baseline methods in 12 tasks of the further
modified environments shown in Figures [Ic and [Tf, in which the potential pickup and dropoff
locations are pushed further away from those in the original environments, making the tasks easier for
exploration and learnt options further misspecified in the tasks. Although reducing the strength of KL
regularization can improve the performance of the soft option transfer agents, in these environments
the advantage of reusing misspecified options is lost.
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